Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Iran J Basic Med Sci ; 26(6): 669-679, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275754

RESUMO

Objectives: Neuroinflammation and microglial activation are pathological features in central nervous system disorders. Excess levels of reactive oxygen species (ROS) and pro-inflammatory cytokines have been implicated in exacerbation of neuronal damage during chronic activation of microglial cells. Padina australis, a brown macroalga, has been demonstrated to have various pharmacological properties such as anti-neuroinflammatory activity. However, the underlying mechanism mediating the anti-neuroinflammatory potential of P. australis remains poorly understood. We explored the use of Malaysian P. australis in attenuating lipopolysaccharide (LPS)-stimulated neuroinflammation in BV2 microglial cells. Materials and Methods: Fresh specimens of P. australis were freeze-dried and subjected to ethanol extraction. The ethanol extract (PAEE) was evaluated for its protective effects against 1 µg/ml LPS-stimulated neuroinflammation in BV2 microglial cells. Results: LPS reduced the viability of BV2 microglia cells and increased the levels of nitric oxide (NO), prostaglandin E2 (PGE2), intracellular reactive oxygen species (ROS), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). However, the neuroinflammatory response was reversed by 0.5-2.0 mg/ml PAEE in a dose-dependent manner. Analysis of liquid chromatography-mass spectrometry (LC-MS) of PAEE subfractions revealed five compounds; methyl α-eleostearate, ethyl α-eleostearate, niacinamide, stearamide, and linoleic acid. Conclusion: The protective effects of PAEE against LPS-stimulated neuroinflammation in BV2 microglial cells were found to be mediated by the suppression of excess levels of intracellular ROS and pro-inflammatory mediators and cytokines, denoting the protective role of P. australis in combating continuous neuroinflammation. Our findings support the use of P. australis as a possible therapeutic for neuroinflammatory and neurodegenerative diseases.

2.
J Cosmet Dermatol ; 22(10): 2810-2815, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37313630

RESUMO

BACKGROUND: Application of natural resources from the marine environment in the cosmeceutical industry is gaining great attention. AIM: This study pursues to discover the cosmeceutical potential of two Malaysian algae, Sargassum sp. and Kappaphycus sp. by determining their antioxidant capacity and assessing the presence of their secondary metabolites with cosmeceutical potential using non-targeted metabolite profiling. METHODS: Metabolite profiling using Quadrupole Time-of-Flight (Q-TOF) liquid chromatography-mass spectrometry (LC-MS) in the Electrospray Ionization (ESI) mode resulted in 110 putative metabolites in Sargassum sp. and 47 putative metabolites in Kappaphycus sp. and were grouped according to their functions. To the best of our knowledge, the bioactive compounds of both algae have not been studied in any great detail. This is the first report to explore their cosmeceutical potential. RESULTS: Six antioxidants were detected in Sargassum sp., including fucoxanthin, (3S, 4R, 3'R)-4-Hydroxyalloxanthin, enzacamene N-stearoyl valine, 2-hydroxy-hexadecanoic acid, and metalloporphyrins. Meanwhile, three antioxidants detected in Kappahycus sp., namely Tanacetol A, 2-fluoro palmitic acid and idebenone metabolites. Three antioxidants are found in both algae species, namely, 3-tert-Butyl-5-methylcatechol, (-)-isoamijiol, and (6S)-dehydrovomifoliol. Anti-inflammatory metabolites such as 5(R)-HETE, protoverine, phytosphingosine, 4,5-Leukotriene-A4, and 5Z-octadecenoic acid were also found in both species. Sargassum sp. possesses higher antioxidant capacity as compared to Kappahycus sp. which may be linked to its number of antioxidant compounds found through LC-MS. CONCLUSIONS: Hence, our results conclude that Malaysian Sargassum sp. and Kappaphycus sp. are potential natural cosmeceutical ingredients as we aim to produce algae cosmeceutical products using native algae.


Assuntos
Cosmecêuticos , Sargassum , Humanos , Cromatografia Líquida/métodos , Antioxidantes/farmacologia , Antioxidantes/química , Espectrometria de Massas em Tandem , Sargassum/química
3.
Metabolites ; 12(11)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36422287

RESUMO

The disease burden of neurodegenerative diseases is on the rise due to the aging population, and neuroinflammation is one of the underlying causes. Spirulina platensis is a well-known superfood with numerous reported bioactivities. However, the effect of S. platensis Universiti Malaya Algae Culture Collection 159 (UMACC 159) (a strain isolated from Israel) on proinflammatory mediators and cytokines remains unknown. In this study, we aimed to determine the anti-neuroinflammatory activity of S. platensis extracts and identify the potential bioactive compounds. S. platensis extracts (hexane, ethyl acetate, ethanol, and aqueous) were screened for phytochemical content and antioxidant activity. Ethanol extract was studied for its effect on proinflammatory mediators and cytokines in lipopolysaccharide (LPS)-induced BV2 microglia. The potential bioactive compounds were identified using liquid chromatography-mass spectrometric (LC-MS) analysis. Ethanol extract had the highest flavonoid content and antioxidant and nitric oxide (NO) inhibitory activity. Ethanol extract completely inhibited the production of NO via the downregulation of inducible NO synthase (iNOS) and significantly reduced the production of tumor necrosis factor (TNF)-α and interleukin (IL)-6. Emmotin A, palmitic amide, and 1-monopalmitin, which might play an important role in cell signaling, have been identified. In conclusion, S. platensis ethanol extract inhibited neuroinflammation through the downregulation of NO, TNF-α and IL-6. This preliminary study provided insight into compound(s) isolation, which could contribute to the development of precision nutrition for disease management.

4.
J Ethnopharmacol ; 299: 115621, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-35987413

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lignosus rhinocerus, also known as Tiger Milk Mushroom has been used traditionally to treat a variety of human conditions, including asthma, diabetes, respiratory disease, skin allergy, and food poisoning. The reported activities of Lignosus rhinocerus extracts include anti-inflammatory, anti-oxidant, anti-asthmatic, anti-microbial, anti-cancer, neuroprotection, and immune modulation effects. However, its effect on human skin is not well documented, including human skin exposed to ultraviolet light (UV). Exposure to UV can trigger various cellular responses, including inflammation, oxidative stress, DNA damage, cell death, and cellular aging. AIM OF THE STUDY: The study aims to investigate the effects of methanolic extract prepared from cultured Lignosus rhinocerus (herein referred to as TM02 and its methanol extract as TM02-ME) on UV-irradiated human keratinocytes. MATERIALS AND METHODS: Powdered stock of TM02 was dissolved and sequentially extracted with different solvents to prepare the extracts and the methanol extract was subsequently characterized based on its bio-activities on HaCaT human keratinocytes. The keratinocytes were pre-treated with the methanol extract followed by UV-irradiation. Cellular responses of the HaCaT cells such as cell viability, DNA damage, as well as gene and protein expressions that were responsive to the treatments, were characterized by using bio-assays, including reverse-transcription based PCR, Western blot, cell viability, and mitochondrial Cytochrome C release assays. RESULTS: TM02-ME protected HaCaT cells from UV-induced DNA damage and cell death in a dose-dependent manner. Pre-treatment of HaCaT cells with TM02-ME led to a 39% reduction of cyclobutane pyrimidine dimers (CPD) and up-regulated the gene expression of REV1 and SPINK5 in UVB-irradiated HaCaT cells when compared to the control. In addition, TM-02-ME treated HaCaT cells increased the expression of BCL-XL and BCL-2 proteins which coincided with the down-regulation of mitochondrial Cyt. C release in the UV-B irradiated HaCaT cells. The results were further supported by data that showed the stable clones of HaCaT cells stably expressed BCL-XL were resistant to UVB-induced cell death. CONCLUSIONS: __The results showed that TM02-ME confers photoprotective activities to UVB-irradiated HaCaT cells, leading to a reduction in DNA damage and cell death as well as up-regulated the expression of REV1 and SPINK5 which are involved in DNA repair and skin barrier function, respectively. The up-regulation of pro-survival members of the BCL-2 family by TM02-ME confers protection against UVB-induced cell death.


Assuntos
Antiasmáticos , Raios Ultravioleta , Antiasmáticos/farmacologia , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Citocromos c/metabolismo , Humanos , Queratinócitos , Metanol/farmacologia , Polyporaceae , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Dímeros de Pirimidina/metabolismo , Dímeros de Pirimidina/farmacologia , Solventes/farmacologia , Raios Ultravioleta/efeitos adversos
5.
Mar Drugs ; 20(8)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36005538

RESUMO

Neuroinflammation is an inflammatory response in any part of the central nervous system triggered by the activation of microglia and astrocytes to produce proinflammatory cytokines in the brain. However, overproduction of proinflammatory cytokines further contributes to the development of neurodegenerative disorders. Red seaweed, Kappaphycus malesianus, is a predominant carrageenophyte commercially cultivated in Semporna, Sabah, Malaysia. It is an important source of raw material for kappa-carrageenan productions in the food, pharmaceutical and cosmetics industries. However, no studies have been conducted focusing on the antineuroinflammatory effects of K. malesianus. The aim of the present study was to investigate the effect of the antineuroinflammatory activity of K. malesianus extracts (ethyl acetate, ethanol and methanol) on lipopolysaccharide-stimulated BV2 microglia and the underlying mechanisms involved in the regulation of neuroinflammatory pathways. Extract with the most promising antineuroinflammatory activity was analyzed using liquid chromatography-mass spectrometry (LC-MS). Our results show that methanol extract has a convincing antineuroinflammatory effect by suppressing both AKT/NF-κB and ERK signaling pathways to inhibit the expression of all proinflammatory cytokines without causing a cytotoxicity effect. LC-MS analysis of methanol extract revealed two compounds: prosopinine and eplerenone. Our findings indicated that metabolites of K. malesianus are potent antineuroinflammatory agents with respect to prevention of neurological disorders.


Assuntos
Microglia , NF-kappa B , Citocinas/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Metanol , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
6.
Sci Rep ; 12(1): 11844, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831345

RESUMO

Methotrexate (MTX) is the most widely used disease-modifying anti-rheumatic drug (DMARD) for rheumatoid arthritis (RA). Many studies have attempted to understand the genetic risk factors that affect the therapeutic outcomes in RA patients treated with MTX. Unlike other studies that focus on the populations of Caucasians, Indian and east Asian countries, this study investigated the impacts of six single nucleotide polymorphisms (SNPs) that are hypothesized to affect the outcomes of MTX treatment in Malaysian RA patients. A total of 647 RA patients from three ethnicities (NMalay = 153; NChinese = 326; NIndian = 168) who received MTX monotherapy (minimum 15 mg per week) were sampled from three hospitals in Malaysia. SNPs were genotyped in patients using TaqMan real-time PCR assay. Data obtained were statistically analysed for the association between SNPs and MTX efficacy and toxicity. Analysis of all 647 RA patients indicated that none of the SNPs has influence on either MTX efficacy or MTX toxicity according to the Chi-square test and binary logistic regression. However, stratification by self-identified ancestries revealed that two out of six SNPs, ATIC C347G (rs2372536) (OR 0.5478, 95% CI 0.3396-0.8835, p = 0.01321) and ATIC T675C (rs4673993) (OR 0.5247, 95% CI 0.3248-0.8478, p = 0.008111), were significantly associated with MTX adequate response in RA patients with Malay ancestry (p < 0.05). As for the MTX toxicity, no significant association was identified for any SNPs selected in this study. Taken all together, ATIC C347G and ATIC T675C can be further evaluated on their impact in MTX efficacy using larger ancestry-specific cohort, and also incorporating high-order gene-gene and gene-environment interactions.


Assuntos
Antirreumáticos , Artrite Reumatoide , Antirreumáticos/uso terapêutico , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Humanos , Malásia , Redes e Vias Metabólicas , Metotrexato , Polimorfismo de Nucleotídeo Único
7.
Compr Rev Food Sci Food Saf ; 21(2): 1024-1053, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35075759

RESUMO

Kombucha is a traditional beverage of Manchurian origin, typically made by fermenting sugared black or green tea with the symbiotic consortium of bacteria and yeast (SCOBY). The beverage has gained increasing popularity in recent years, mainly due to its heralded health benefits. The fermentation process of kombucha also results in the production of various bioactive compounds with antimicrobial potential, making it a promising candidate in the exploration of alternative sources of antimicrobial agents, and may be helpful in combating the rising threat of antibiotic resistance. Literature survey performed on Web of Science, Scopus, and PubMed revealed the extensive research that has firmly established the antimicrobial activity of kombucha against a broad spectrum of bacteria and fungi. This activity could be attributed to the synergistic activities of the microbial species in the kombucha microbiota that led to the synthesis of compounds with antimicrobial properties such as acetic acid and various polyphenols. However, research thus far only involved screening for the antimicrobial activity of kombucha. Therefore, there is still a research gap about the molecular mechanism of the kombucha reaction against specific pathogens and its influence on human health upon consumption. Future research may focus on investigating this aspect. Further characterization of the biological activity of the microbial community in kombucha may also facilitate the discovery of novel antimicrobial compounds, such as bacteriocins produced by the microorganisms.


Assuntos
Anti-Infecciosos , Chá , Antibacterianos , Anti-Infecciosos/farmacologia , Bactérias , Fermentação , Humanos , Polifenóis/análise , Chá/microbiologia , Leveduras
8.
Iran J Basic Med Sci ; 24(8): 997-1013, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34804417

RESUMO

Depression is a complex heterogeneous brain disorder characterized by a range of symptoms, resulting in psychomotor and cognitive disabilities and suicidal thoughts. Its prevalence has reached an alarming level affecting millions of people globally. Despite advances in current pharmacological treatments, the heterogenicity of clinical response and incidences of adverse effects have shifted research focus to identification of new natural substances with minimal or no adverse effects as therapeutic alternatives. Marine algae-derived extracts and their constituents are considered potential sources of secondary metabolites with diverse beneficial effects. Marine algae with enormous health benefits are emerging as a natural source for discovering new alternative antidepressants. Its medicinal properties exhibited shielding efficacy against neuroinflammation, oxidative stress, and mitochondrial dysfunction, which are indicated to underlie the pathogenesis of many neurological disorders. Marine algae have been found to ameliorate depressive-like symptoms and behaviors in preclinical and clinical studies by restoring monoaminergic neurotransmission, hypothalamic-pituitary-adrenal axis function, neuroplasticity, and continuous neurogenesis in the dentate gyrus of the hippocampus via modulating brain-derived neurotrophic factors and antineuroinflammatory activity. Although antidepressant effects of marine algae have not been validated in comparison with currently available synthetic antidepressants, they have been reported to have effects on the pathophysiology of depression, thus suggesting their potential as novel antidepressants. In this review, we analyzed the currently available research on the potential benefits of marine algae on depression, including their effects on the pathophysiology of depression, potential clinical relevance of their antidepressant effects in preclinical and clinical studies, and the underlying mechanisms of these effects.

9.
Cells ; 10(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34571842

RESUMO

Despite the progressive advances, current standards of treatments for peripheral nerve injury do not guarantee complete recovery. Thus, alternative therapeutic interventions should be considered. Complementary and alternative medicines (CAMs) are widely explored for their therapeutic value, but their potential use in peripheral nerve regeneration is underappreciated. The present systematic review, designed according to guidelines of Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols, aims to present and discuss the current literature on the neuroregenerative potential of CAMs, focusing on plants or herbs, mushrooms, decoctions, and their respective natural products. The available literature on CAMs associated with peripheral nerve regeneration published up to 2020 were retrieved from PubMed, Scopus, and Web of Science. According to current literature, the neuroregenerative potential of Achyranthes bidentata, Astragalus membranaceus, Curcuma longa, Panax ginseng, and Hericium erinaceus are the most widely studied. Various CAMs enhanced proliferation and migration of Schwann cells in vitro, primarily through activation of MAPK pathway and FGF-2 signaling, respectively. Animal studies demonstrated the ability of CAMs to promote peripheral nerve regeneration and functional recovery, which are partially associated with modulations of neurotrophic factors, pro-inflammatory cytokines, and anti-apoptotic signaling. This systematic review provides evidence for the potential use of CAMs in the management of peripheral nerve injury.


Assuntos
Produtos Biológicos/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Nervos Periféricos/efeitos dos fármacos , Animais , Terapias Complementares/métodos , Humanos , Transdução de Sinais/efeitos dos fármacos
10.
Front Microbiol ; 12: 653562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276590

RESUMO

With a continuous threat of antimicrobial resistance on human health worldwide, efforts for new alternatives are ongoing for the management of bacterial infectious diseases. Natural products of land and sea, being conceived to be having fewer side effects, pose themselves as a welcome relief. In this respect, we have taken a scaffolded approach to unearthing the almost unexplored chemical constituents of Malaysian red seaweed, Gracilaria edulis. Essentially, a preliminary evaluation of the ethyl acetate and acetone solvent extracts, among a series of six such, revealed potential antibacterial activity against six MDR species namely, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enterica, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, and Bacillus subtilis. Detailed analyses of the inlying chemical constituents, through LC-MS and GC-MS chromatographic separation, revealed a library of metabolic compounds. These were led for further virtual screening against selected key role playing proteins in the virulence of the aforesaid bacteria. To this end, detailed predictive pharmacological analyses added up to reinforce Eplerenone as a natural alternative from the plethora of plausible bioactives. Our work adds the ongoing effort to re-discover and repurpose biochemical compounds to combat the antimicrobial resistance offered by the Gram-positive and the -negative bacterial species.

11.
J Parasitol ; 107(4): 537-546, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34265050

RESUMO

Nanomedicine has the potential in enhancing the efficacy and bioavailability of anti-infective agents. Here we determined whether conjugation of the Malaysian cultivated seaweed Kappaphycus alvarezii with silver-conjugated nanoparticles enhanced anti-acanthamoebic properties. Silver-conjugated K. alvarezii were successfully synthesized, followed by characterization with Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry, and transmission electron microscopy. Amoebicidal effects were evaluated against Acanthamoeba castellanii, and cytotoxicity assays were performed using HaCaT cells. Viability assays revealed that silver nanoparticles conjugated with K. alvarezii extract exhibited significant antiamoebic properties (P < 0.05). Nano-conjugates induced the production of reactive oxygen species. Importantly, silver-conjugated extract inhibited amoeba-mediated host cell damage as established by lactate dehydrogenase release. Neither the nano-conjugates nor the extract showed cytotoxicity against human cells in vitro. Liquid chromatography and mass spectroscopy revealed several molecules, including 2,6-nonadien-1-ol, N-desmethyl trifluoperazine, dulciol B, lucidumol A, acetoxolone, 2-[4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(octyloxy)phenol, C16 sphinganine, 22-tricosenoic acid, and ß-dihydrorotenone, of which dulciol B and C16 sphinganine are known to possess antimicrobial activities. In summary, marine organisms are an important source of bioactive molecules with anti-acanthamoebic properties that can be enhanced by conjugating with silver nanoparticles. Natural products combined with nanotechnology using multifunctional nanoparticle complexes can deliver therapeutic agents effectively and hold promise in the development of new formulations of anti-acanthamoebic agents.


Assuntos
Acanthamoeba/efeitos dos fármacos , Nanopartículas Metálicas/uso terapêutico , Rodófitas/química , Prata/metabolismo , Humanos , Malásia , Espécies Reativas de Oxigênio/metabolismo , Prata/uso terapêutico
12.
Sci Rep ; 11(1): 13859, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226594

RESUMO

The emergence and spread of antimicrobial resistance have been of serious concern to human health and the management of bacterial infectious diseases. Effective treatment of these diseases requires the development of novel therapeutics, preferably free of side effects. In this regard, natural products are frequently conceived to be potential alternative sources for novel antibacterial compounds. Herein, we have evaluated the antibacterial activity of the epicarp extracts of the Malaysian cultivar of yellow rambutan fruit (Nephelium lappaceum L.) against six pathogens namely, Bacillus subtilis, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella enterica. Among a series of solvent extracts, fractions of ethyl acetate and acetone have revealed significant activity towards all tested strains. Chemical profiling of these fractions, via HPLC, LC-MS and GC-MS, has generated a library of potentially bioactive compounds. Downstream virtual screening, pharmacological prediction, and receptor-ligand molecular dynamics simulation have eventually unveiled novel potential antibacterial compounds, which can be extracted for medicinal use. We report compounds like catechin, eplerenone and oritin-4-beta-ol to be computationally inhibiting the ATP-binding domain of the chaperone, DnaK of P. aeruginosa and MRSA. Thus, our work follows the objective to propose new antimicrobials capable of perforating the barrier of resistance posed by both the gram positives and the negatives.


Assuntos
Infecções Bacterianas/tratamento farmacológico , Produtos Biológicos/farmacologia , Extratos Vegetais/farmacologia , Sapindaceae/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/patogenicidade , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Produtos Biológicos/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Frutas/química , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/patogenicidade
13.
Mar Drugs ; 19(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070821

RESUMO

Air pollution has recently become a subject of increasing concern in many parts of the world. The World Health Organization (WHO) estimated that nearly 4.2 million early deaths are due to exposure to fine particles in polluted air, which causes multiple respiratory diseases. Algae, as a natural product, can be an alternative treatment due to potential biofunctional properties and advantages. This systematic review aims to summarize and evaluate the evidence of metabolites derived from algae as potential anti-inflammatory agents against respiratory disorders induced by atmospheric particulate matter (PM). Databases such as Scopus, Web of Science, and PubMed were systematically searched for relevant published full articles from 2016 to 2020. The main key search terms were limited to "algae", "anti-inflammation", and "air pollutant". The search activity resulted in the retrieval of a total of 36 publications. Nine publications are eligible for inclusion in this systematic review. A total of four brown algae (Ecklonia cava, Ishige okamurae, Sargassum binderi and Sargassum horneri) with phytosterol, polysaccharides and polyphenols were reported in the nine studies. The review sheds light on the pathways of particulate matter travelling into respiratory systems and causing inflammation, and on the mechanisms of actions of algae in inhibiting inflammation. Limitations and future directions are also discussed. More research is needed to investigate the potential of algae as anti-inflammatory agents against PM in in vivo and in vitro experimental models, as well as clinically.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Anti-Inflamatórios/uso terapêutico , Material Particulado/efeitos adversos , Doenças Respiratórias/tratamento farmacológico , Animais , Humanos
14.
Acta Trop ; 211: 105618, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32628912

RESUMO

Acanthamoeba spp. are free living amoeba (FLA) which are widely distributed in nature. They are opportunistic parasites and can cause severe infections to the eye, skin and central nervous system. The advances in drug discovery and modifications in the chemotherapeutic agents have shown little improvement in morbidity and mortality rates associated with Acanthamoeba infections. The mechanism-based process of drug discovery depends on the molecular drug targets present in the signaling pathways in the genome. Synthetic libraries provide a platform for broad spectrum of activities due to their desired structural modifications. Azoles, originally a class of synthetic anti-fungal drugs, disrupt the fungal cell membrane by inhibiting the biosynthesis of ergosterol through the inhibition of cytochrome P450 dependent 14α-lanosterol, a key step of the sterol pathway. Acanthamoeba and fungi share the presence of similar sterol intermediate, as ergosterol is also the major end-product in the sterol biosynthesis in Acanthamoeba. Sterols present in the eukaryotic cell membrane are one of the most essential lipids and exhibit important structural and signaling functions. Therefore, in this review we highlight the importance of specific targeting of ergosterol present in Acanthamoebic membrane by azole compounds for amoebicidal activity. Previously, azoles have also been repurposed to report antimicrobial, antiparasitic and antibacterial properties. Moreover, by loading the azoles into nanoparticles through advanced techniques in nanotechnology, such as physical encapsulation, adsorption, or chemical conjugation, the pharmacokinetics and therapeutic index of the drugs can be significantly improved. The current review proposes an important strategy to target Acanthamoeba using synthetic libraries of azoles and their conjugated nanoparticles for the first time.


Assuntos
Acanthamoeba/efeitos dos fármacos , Antifúngicos/farmacologia , Azóis/farmacologia , Ergosterol/metabolismo , Nanopartículas/química , Humanos
15.
Mar Drugs ; 18(6)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575468

RESUMO

Cosmetics are widely used by people around the world to protect the skin from external stimuli. Consumer preference towards natural cosmetic products has increased as the synthetic cosmetic products caused adverse side effects and resulted in low absorption rate due to the chemicals' larger molecular size. The cosmetic industry uses the term "cosmeceutical", referring to a cosmetic product that is claimed to have medicinal or drug-like benefits. Marine algae have gained tremendous attention in cosmeceuticals. They are one of the richest marine resources considered safe and possessed negligible cytotoxicity effects on humans. Marine algae are rich in bioactive substances that have shown to exhibit strong benefits to the skin, particularly in overcoming rashes, pigmentation, aging, and cancer. The current review provides a detailed survey of the literature on cosmeceutical potentials and applications of algae as skin whitening, anti-aging, anticancer, antioxidant, anti-inflammation, and antimicrobial agents. The biological functions of algae and the underlying mechanisms of all these activities are included in this review. In addition, the challenges of using algae in cosmeceutical applications, such as the effectiveness of different extraction methods and processing, quality assurance, and regulations concerning extracts of algae in this sector were also discussed.


Assuntos
Produtos Biológicos/farmacologia , Cosmecêuticos/farmacologia , Alga Marinha/química , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/uso terapêutico , Cosmecêuticos/química , Cosmecêuticos/isolamento & purificação , Cosmecêuticos/uso terapêutico , Exantema/tratamento farmacológico , Humanos , Estrutura Molecular , Neoplasias/tratamento farmacológico , Alga Marinha/metabolismo , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Preparações Clareadoras de Pele/química , Preparações Clareadoras de Pele/isolamento & purificação , Preparações Clareadoras de Pele/farmacologia , Preparações Clareadoras de Pele/uso terapêutico , Pigmentação da Pele/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos
16.
Saudi J Biol Sci ; 27(6): 1435-1445, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32489279

RESUMO

Oxidative damage has been associated with the pathophysiology of depression. Macroalgae are equipped with antioxidant defense system to counteract the effects of free radicals. We explored the use of Malaysian Padina australis to attenuate high dose corticosterone-mediated oxidative damage in a cellular model mimicking depression. Fresh specimen of P. australis was freeze-dried and extracted sequentially with hexanes, ethyl acetate and ethanol. The extracts were screened for their phytochemical contents and antioxidant activities. Ethanol extract demonstrated the most potent antioxidant capacity and was selected for subsequent assays against high dose corticosterone of 600 µM-mediated oxidative damage in the rat pheochromocytoma (PC12) cells. The corticosterone reduced the cell viability, glutathione (GSH) level, aconitase activity, and mitochondrial membrane potential (MMP); and increased the lactate dehydrogenase (LDH) release, intracellular reactive oxygen species (ROS) level and apoptosis. However, the extent of oxidative damage was reversed by 0.25-0.5 mg/mL ethanol extract suggesting a possible role of P. australis-based antioxidants in the mitochondrial defense against constant ROS generation and regulation of antioxidant pathway. The effects were similar to that of desipramine, a tricyclic antidepressant. Our findings indicate that P. australis can be developed as a mitochondria-targeted antioxidant to mitigate antidepressant-like effects.

17.
PeerJ ; 8: e8755, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274263

RESUMO

Invasive apple snails, Pomacea canaliculata and P. maculata, have a widespread distribution globally and are regarded as devastating pests of agricultural wetlands. The two species are morphologically similar, which hinders species identification via morphological approaches and species-specific management efforts. Advances in molecular genetics may contribute effective diagnostic tools to potentially resolve morphological ambiguity. DNA barcoding has revolutionized the field of taxonomy by providing an alternative, simple approach for species discrimination, where short sections of DNA, the cytochrome c oxidase subunit I (COI) gene in particular, are used as 'barcodes' to delineate species boundaries. In our study, we aimed to assess the effectiveness of two mitochondrial markers, the COI and 16S ribosomal deoxyribonucleic acid (16S rDNA) markers for DNA barcoding of P. canaliculata and P. maculata. The COI and 16S rDNA sequences of 40 Pomacea specimens collected from six localities in Peninsular Malaysia were analyzed to assess their barcoding performance using phylogenetic methods and distance-based assessments. The results confirmed both markers were suitable for barcoding P. canaliculata and P. maculata. The phylogenies of the COI and 16S rDNA markers demonstrated species-specific monophyly and were largely congruent with the exception of one individual. The COI marker exhibited a larger barcoding gap (6.06-6.58%) than the 16S rDNA marker (1.54%); however, the magnitude of barcoding gap generated within the barcoding region of the 16S rDNA marker (12-fold) was bigger than the COI counterpart (approximately 9-fold). Both markers were generally successful in identifying P. canaliculata and P. maculata in the similarity-based DNA identifications. The COI + 16S rDNA concatenated dataset successfully recovered monophylies of P. canaliculata and P. maculata but concatenation did not improve individual datasets in distance-based analyses. Overall, although both markers were successful for the identification of apple snails, the COI molecular marker is a better barcoding marker and could be utilized in various population genetic studies of P. canaliculata and P. maculata.

18.
Antibiotics (Basel) ; 8(3)2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533237

RESUMO

Seaweeds are gaining a considerable amount of attention for their antioxidant and antibacterial properties. Caulerpa racemosa and Caulerpa lentillifera, also known as 'sea grapes', are green seaweeds commonly found in different parts of the world, but the antioxidant and antibacterial potentials of Malaysian C. racemosa and C. lentillifera have not been thoroughly explored. In this study, crude extracts of the seaweeds were prepared using chloroform, methanol, and water. Total phenolic content (TPC) and total flavonoid content (TFC) were measured, followed by in vitro antioxidant activity determination using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Antibacterial activities of these extracts were tested against Methicillin-resistant Staphylococcus aureus (MRSA) and neuropathogenic Escherichia coli K1. Liquid chromatography-mass spectrometry (LCMS) analysis was then used to determine the possible compounds present in the extract with the most potent antioxidant and antibacterial activity. Results showed that C. racemosa chloroform extract had the highest TPC (13.41 ± 0.86 mg GAE/g), antioxidant effect (EC50 at 0.65 ± 0.03 mg/mL), and the strongest antibacterial effect (97.7 ± 0.30%) against MRSA. LCMS analysis proposed that the chloroform extracts of C. racemosa are mainly polyunsaturated and monounsaturated fatty acids, terpenes, and alkaloids. In conclusion, C. racemosa can be a great source of novel antioxidant and antibacterial agents, but isolation and purification of the bioactive compounds are needed to study their mechanism of action.

19.
Microbiologyopen ; 8(10): e859, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31199601

RESUMO

Microbial natural products serve as a good source for antioxidants. The mangrove-derived Streptomyces bacteria have been evidenced to produce antioxidative compounds. This study reports the isolation of Streptomyces sp. MUM273b from mangrove soil that may serve as a promising source of antioxidants and UV-protective agents. Identification and characterization methods determine that strain MUM273b belongs to the genus Streptomyces. The MUM273b extract exhibits antioxidant activities, including DPPH, ABTS, and superoxide radical scavenging activities and also metal-chelating activity. The MUM273b extract was also shown to inhibit the production of malondialdehyde in metal-induced lipid peroxidation. Strong correlation between the antioxidant activities and the total phenolic content of MUM273b extract was shown. In addition, MUM273b extract exhibited cytoprotective effect on the UVB-induced cell death in HaCaT keratinocytes. Gas chromatography-mass spectrometry analysis detected phenolics, pyrrole, pyrazine, ester, and cyclic dipeptides in MUM273b extract. In summary, Streptomyces MUM273b extract portrays an exciting avenue for future antioxidative drugs and cosmeceuticals development.


Assuntos
Antioxidantes/isolamento & purificação , Produtos Biológicos/isolamento & purificação , Protetores contra Radiação/isolamento & purificação , Streptomyces/química , Antioxidantes/farmacologia , Produtos Biológicos/farmacologia , Sobrevivência Celular/efeitos da radiação , Quelantes/isolamento & purificação , Quelantes/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Queratinócitos/fisiologia , Queratinócitos/efeitos da radiação , Malásia , Protetores contra Radiação/farmacologia , Microbiologia do Solo , Streptomyces/classificação , Streptomyces/genética , Streptomyces/isolamento & purificação
20.
PLoS One ; 13(5): e0196582, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29734361

RESUMO

Invasive snails in the genus Pomacea have spread across Southeast Asia including Peninsular Malaysia. Their effects on natural and agricultural wetlands are appreciable, but species-specific effects are less clear because of morphological similarity among the species. Our objective was to establish diagnostic characteristics of Pomacea species in Malaysia using genetic and morphological criteria. The mitochondrial COI gene of 52 adult snails from eight localities in Peninsular Malaysia was amplified, sequenced, and analysed to verify species and phylogenetic relationships. Shells were compared using geometric morphometric and covariance analyses. Two monophyletic taxa, P. canaliculata and P. maculata, occurred in our samples. The mean ratio of shell height: aperture height (P = 0.042) and shell height: shell width (P = 0.007) was smaller in P. maculata. P. maculata co-occurred with P. canaliculata in five localities, but samples from three localities contained only P. canaliculata. This study is the first to confirm the presence of two of the most invasive species of Pomacea in Peninsular Malaysia using a molecular technique. P. canaliculata appears to be the more widespread species. Despite statistical differences, both quantitative and qualitative morphological characteristics demonstrated much interspecific overlap and intraspecific variability; thus, shell morphology alone cannot reliably verify species identity. Molecular techniques for distinguishing between these two highly invasive Pomacea species are needed to understand their specific ecological niches and to develop effective protocols for their management.


Assuntos
Caramujos/citologia , Caramujos/genética , Exoesqueleto/anatomia & histologia , Animais , Sequência de Bases , Ecologia , Genes Mitocondriais/genética , Espécies Introduzidas , Malásia , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...